Регистрация
Регистрация Поиск Пользователи Все разделы прочитаны  
CGM > Всякая всячина > Игра вообще
Опции темы

Новая задача про шкатулки

Важные объявления
Старый 03.08.2008, 22:32   #21 (permalink)
Старожил
 
Регистрация: 25.05.2006
Сообщений: 805
Цитата:
Сообщение от NuKEr писал вс, 03 августа 2008 13:44
Цитата:
Сообщение от Yura писал сб, 02 августа 2008 22:31
Если верить Википедии, то разрешения парадокса 2 шкатулок пока не найдено...
А ссылку на статью?
[Зарегистрироваться?]
__________________
Нужно уметь проигрывать. К этой мысли следует постепенно приучать всех своих противников.
SunnyRay вне форума      
Старый 04.08.2008, 04:00   #22 (permalink)
Новичок
 
Регистрация: 05.06.2008
Адрес: Н Новгород
Сообщений: 43
Называйте меня кем хотите, но со шкатулками все элементарно. +25%.
Выбираем вторую шкатулку: повезло-удваиваемся, не повезло- теряем только ПОЛОВИНУ. (0.5*2*S + 0.5*0.5*S)-S=0.25*S.
__________________
Вероятность крупного выигрыша в лотерею всегда одинакова и не зависит от того, купили вы лотерейный билет или нет.
е2е4 вне форума      
Старый 04.08.2008, 07:56   #23 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Цитата:
Сообщение от е2е4 писал пн, 04 августа 2008 04:00
Называйте меня кем хотите, но со шкатулками все элементарно. +25%. Выбираем вторую шкатулку: повезло-удваиваемся, не повезло- теряем только ПОЛОВИНУ. (0.5*2*S + 0.5*0.5*S)-S=0.25*S.
Цитата:
Сообщение от Цитата:
Эту задачу (два конверта, в одном в 100 раз больше деней, чем в другом) предлагали на приеме в аналитический отдел одной крупной американской компании, которая занимается кредитами на жилье. стартовая запрлата, ну скажем $150 000 в год. Тех, кто начинал вычислять вероятности, гнали нафиг (в первую очередь тех, кто пытался обосновать, что вторую открыть всегда выгодно)....
Не переживай, ты не одинок в своих заблуждениях. Эта задача действительно очень сложна в понимании.
korovin вне форума      
Старый 04.08.2008, 13:55   #24 (permalink)
Новичок
 
Регистрация: 05.06.2008
Адрес: Н Новгород
Сообщений: 43
ИМХО, задача равносильна следующей.
У нас есть 1К$, нам предлагают их поставить сыграть коинфлип в покер (кинуть монетку и т.д., где шансы 50/50), выигрываем- получаем 2K$, проигрываем - получаем возврат ПОЛОВИНЫ ставки т.е. 0,5К$.
__________________
Вероятность крупного выигрыша в лотерею всегда одинакова и не зависит от того, купили вы лотерейный билет или нет.
е2е4 вне форума      
Старый 04.08.2008, 14:56   #25 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Цитата:
Сообщение от е2е4 писал пн, 04 августа 2008 04:00
Называйте меня кем хотите, но со шкатулками все элементарно. +25%. Выбираем вторую шкатулку: повезло-удваиваемся, не повезло- теряем только ПОЛОВИНУ. (0.5*2*S + 0.5*0.5*S)-S=0.25*S.
Возьми для конкретики две суммы, скажем 100 и 200. Посчитай свое МО для случая когда ты береш первую открытую сумму. Это 0.5*100+0.5*200=150. Теперь посчитай свое МО для случая когда ты всегда меняеш свой выбор. Это так-же 0.5*100+0.5*200=150. И где здесь преимущество в 25%? Суть данной операции - проверка твоей теории. Она отчетливо показывает нам что твоя теория не верна. Можно придумать миллион похожих задач с коинфлипом, но в этой задаче его НЕТ. Шансы 50/50 ты придумал САМ, о них в задаче ни слова не сказано.
korovin вне форума      
Старый 04.08.2008, 16:09   #26 (permalink)
Новичок
 
Регистрация: 05.06.2008
Адрес: Н Новгород
Сообщений: 43
Цитата:
Сообщение от Korovin писал пн, 04 августа 2008 14:56
Цитата:
Сообщение от е2е4 писал пн, 04 августа 2008 04:00
Называйте меня кем хотите, но со шкатулками все элементарно. +25%. Выбираем вторую шкатулку: повезло-удваиваемся, не повезло- теряем только ПОЛОВИНУ. (0.5*2*S + 0.5*0.5*S)-S=0.25*S.
Возьми для конкретики две суммы, скажем 100 и 200. Посчитай свое МО для случая когда ты береш первую открытую сумму. Это 0.5*100+0.5*200=150. Теперь посчитай свое МО для случая когда ты всегда меняеш свой выбор. Это так-же 0.5*100+0.5*200=150. И где здесь преимущество в 25%? Суть данной операции - проверка твоей теории. Она отчетливо показывает нам что твоя теория не верна. Можно придумать миллион похожих задач с коинфлипом, но в этой задаче его НЕТ. Шансы 50/50 ты придумал САМ, о них в задаче ни слова не сказано.
МО от ВЫБОРА шкатулки (№1 или №2) = 150 - полностью согласен.
МО от ИЗМЕНЕНИЯ ВЫБОРА шкатулок = 0.5*2*(200+100)/2 + 0.5*0.5*(200+100)/2 = 187,5

187,5-150=37,5 - вот мои 25%.

ИМХО, Вы сравниваете МО от различных действий и никакого парадокса здесь нет.
__________________
Вероятность крупного выигрыша в лотерею всегда одинакова и не зависит от того, купили вы лотерейный билет или нет.
е2е4 вне форума      
Старый 04.08.2008, 16:38   #27 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Тяжело с покеристами говорить о математике. Я выбрал 100, изменил выбор, получил 200. Я выбрал 200, изменил выбор, получил 100. МО смены выбора равно 150. Никаких дополнительных слагаемых в расчетах нет. И не надо их придумывать. Чем отличается выбор левой шкатулки сразу от выбора левой шкатулки после открытия правой? Из за лишнего движения рукой в ней денег автоматически станет больше? Какова причина появления этих мифических 25% при смене выбора?

Обращаюсь ко всем, кто согласен с е2е4: Я понимаю откуда они у ВАС берутся - из за того что ВЫ ошибочно берете шансы 50/50. Я даже понимаю почему ВЫ думаете что это правильно, но объяснить ВАМ причину ВАШИХ заблуждение на ВАШЕМ языке увы, не могу. Попытки сделать это на данном форуме предпринимались неоднократно и не только мной, но ни одна из них не увенчалась успехом. Подобных постов в темах про шкатулки сотни, ссылки я привел выше. Посему предлагаю в очередной раз остатся при своих мнениях.
korovin вне форума      
Старый 05.08.2008, 14:44   #28 (permalink)
Ветеран
 
Аватар для Mercator
 
Регистрация: 25.05.2005
Адрес: Москва
Сообщений: 1,210
Цитата:
Сообщение от Korovin писал пн, 04 августа 2008 16:38
Тяжело с покеристами говорить о математике.

Вот так. Под одну гребёнку. Не то, чтобы я обиделся, просто недоумеваю, неужели среди покеристов преобладают дремучие невежды?

Как покерист казиношнику, ответственно заявляю: лично для меня ответ в этой задаче очевиден и он совпадает с твоим.

P.S. Интонация певрого абзаца ироническая
Mercator вне форума      
Старый 05.08.2008, 15:55   #29 (permalink)
Энтузиаст
 
Регистрация: 20.03.2007
Сообщений: 357
Цитата:
Сообщение от Mercator писал вт, 05 августа 2008 14:44

Вот так. Под одну гребёнку. Не то, чтобы я обиделся, просто недоумеваю, неужели среди покеристов преобладают дремучие невежды?

Как покерист казиношнику, ответственно заявляю: лично для меня ответ в этой задаче очевиден и он совпадает с твоим.

P.S. Интонация певрого абзаца ироническая
Правильно Коровин сказал. В общей массе, так и получается. Для меня ничего очевидного нет в этой задаче. Почитал википедию, успокоился, что оказывается и, действительно, не так всё просто.
NuKEr вне форума      
Старый 05.08.2008, 16:40   #30 (permalink)
Новичок
 
Регистрация: 05.06.2008
Адрес: Н Новгород
Сообщений: 43
Цитата:
Сообщение от Korovin писал пн, 04 августа 2008 16:38
Обращаюсь ко всем, кто согласен с е2е4: Я понимаю откуда они у ВАС берутся - из за того что ВЫ ошибочно берете шансы 50/50. Я даже понимаю почему ВЫ думаете что это правильно, но объяснить ВАМ причину ВАШИХ заблуждение на ВАШЕМ языке увы, не могу. Попытки сделать это на данном форуме предпринимались неоднократно и не только мной, но ни одна из них не увенчалась успехом. Подобных постов в темах про шкатулки сотни, ссылки я привел выше. Посему предлагаю в очередной раз остатся при своих мнениях.
Теперь я сам с собой не согласен.
__________________
Вероятность крупного выигрыша в лотерею всегда одинакова и не зависит от того, купили вы лотерейный билет или нет.
е2е4 вне форума      
Старый 05.08.2008, 17:08   #31 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Может быть проведем конкурс на самое доходчивое освещение вопроса: Почему в задаче о шкатулках простая формула "(1/2)*0.5+(2)*0.5=1.25" дает неверный результат?

Очевидно что проблема в данных, которые мы используем. Рассмотрим эти данные: (1/2) и (2) это возможные суммы относительно суммы в открытой шкатулке. Эти суммы заданы в условии задачи. Остается вероятности 0.5 и 0.5. Проблема может быть только в них, других данных в формуле нет. Давайте думать откула они у нас появились. В задаче где-нибудь сказано про эти вероятности? НЕТ. Получается что мы их сами придумали, нам ведь надо было что-то подставить в формулу чтобы посчитать МО. Приходим к вопросу: Почему человеческий мозг решает подставить в формулу именно 0.5 и 0.5, а не 1/3 и 2/3 например? Наш мозг "знает" что шансы открыть большую либо меньшую сумму их двух возможных 50/50. Из этого "знания" он по принципу "похожести модели" выдает нам ложный вывод о шансах 50/50 найти во второй шкатулке либо 1/2 либо 2. В какой-то момент в нашем мозгу происходит подмена понятий и мы, взрослые, образованые люди уподобляемся блондинке ихз анекдота про вероятность встретить на улице динозвра.

Собственно, все это я уже писал здесь год назад в теме, которую специально для этого и создал https://forumcgm.org/msg?th=16061&start=0 но тогда форум оказался не готов к обсуждению этой проблемы. Не уверен что и сейчас это получится.
korovin вне форума      
Старый 05.08.2008, 22:15   #32 (permalink)
Энтузиаст
 
Регистрация: 20.03.2007
Сообщений: 357
Цитата:
Сообщение от Korovin писал вт, 05 августа 2008 17:08
Может быть проведем конкурс на самое доходчивое освещение вопроса: Почему в задаче о шкатулках простая формула "(1/2)*0.5+(2)*0.5=1.25" дает неверный результат?
А почему надо объяснять именно это, а не обратное?
Ведь эта задача - парадокс, прелесть которого в том, что видна противоречивость двух подходов решения. И смысл, например, понять, как нужно избежать ошибки в решение проблемы, ведь можем столкнутся с задачей, где ни будет другого очевидного подхода в решении для проверки.

Если в задаче мы принимаем, что вероятности не 1/2. Но на самом деле вероятности какие то определенные есть увидеть более маленькую, большую сумму. Мы можем легко вычислить, зная МО. Если обобщить задачу, если суммы не в 2 раза отличаются, а в n. То тогда, эти вероятности будут зависит от n - механизм этой зависимости не понятен.

Почитав вики, мне вот больше понравилась другая задача-парадокс, которая собственно из этой и родилась. Вот мой перевод:
В шкатулках суммы 2^n, 2^(n+1) с вероятностью 2^n/3^(n+1), n=0,1,2... Понятно, что если мы увидели в шкатулке 1, то надо менять, т.к. в другой точно 2. Далее считают МО смены выбора, когда мы видим x. МО=11/10 * x. Т.е. надо менять. Парадокс тут такой же: получается можно менять, не глядя. Один из вариантов объяснения этого парадокса: МО для любой стратегии - бесконечность. И это просто еще один пример известного феномена, странное поведение бесконечности
Почему в изначальной задачи такому же объяснению не быть?
NuKEr вне форума      
Старый 05.08.2008, 23:24   #33 (permalink)
Старожил
 
Регистрация: 25.05.2006
Сообщений: 805
А почитав дальше статьи из списка литературы в вики можно еще много интересного узнать . Например вот это.

Рассмотрим другую задачу, очень похожую на эту. Деньги в два конверта раскладываются по следующему принципу: монетка подбрасывается до тех пор, пока не выпадет орел, и в один конверт кладется 2 в степени количества выпавших решек $, так же определяется сумма в другом конверте. Открываем один конверт, там сколько-то денег, надо ли менять?

Легко вычислить, что МО денег в конвертах бесконечно (1/2+1/2+1/2+...), поэтому какую бы конечную сумму мы не нашли в первом конверте, менять выгодно.

Но отсюда нельзя сделать вывод, что МО замены положительно! Очень контринтуитивная вещь.

Интуитивные вывод "Если МО(замены | открыто x$) > 0 для любого x, то МО(замены) > 0" - неверен! (здесь | означает "при условии")

МО(замены) = сумме по всем возможным парам (А, В) и (В, А) в конвертах разностей между ними, как положительных, так и отрицательных, причем отдельно сумма положительных и отдельно сумма отрицательных расходятся. В таком случае перестановкой слагаемых сумму можно превратить во что угодно. То есть сумма не определена. Группировка слагаемых в пары, дающие МО(замены | открыто x$) для разных х, приведет к положительной сумме, но другой группировкой она может быть приведена к отрицательной.

В задаче о шкатулках с распределением с бесконечным МО первого выбора получается то же самое: менять всегда выгодно, но при этом нельзя утверждать, что МО замены положительно. Можно считать это парадоксом, а можно нормальным математическим фактом.

Доказано, что никакие распределения с конечным МО не приводят к парадоксу.

Как я понял, это самое общепринятое мнение, с ним согласны почти все исследователи.

PS: не смог найти вот эту статью ("Clark and Shackel, The Two-Envelope Paradox, in Mind July 2000") в открытом доступе, если кто найдет (или вдруг купит), дайте почитать В ней мнение, отличающееся от большинства.
__________________
Нужно уметь проигрывать. К этой мысли следует постепенно приучать всех своих противников.
SunnyRay вне форума      
Старый 06.08.2008, 00:29   #34 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Цитата:
Сообщение от NuKEr писал вт, 05 августа 2008 22:15
Если в задаче мы принимаем, что вероятности не 1/2. Но на самом деле вероятности какие то определенные есть увидеть более маленькую, большую сумму. Мы можем легко вычислить, зная МО. Если обобщить задачу, если суммы не в 2 раза отличаются, а в n. То тогда, эти вероятности будут зависит от n - механизм этой зависимости не понятен.
Так дело в том, что мы НЕ знаем МО в деньгах ни до открытия первой шкатулки, ни после открытия первой шкатулки. 100$ нам не дает информацию о МО игры как раз из за того, что мы не знаем с какой верояностью в другую шкатулку положили другую сумму. Об этой вероятности в задаче нигде не сказано. Говоря о подмене в нашем мозгу я имел ввиду следующие 2 модели:

1. Моделть с закрытыми шкатулками. МО= 0.5*Х+0.5*2*Х=1.5Х. Х не известен - МО не определено.

2. Модель с 1-й открытой. МО= Р*(S/2)+(1-Р)*(2*S). Р не известна, МО по прежнему НЕ определено.

Наш мозг тупо берет вероятнсти из первой модели и подставляет из во вторую, пытаясь посчитать МО, посчитать которое в данном случаве невозможно, как нам бы этого не хотелось, отсюда и получатся левое МО=125$. Тоже самое зачастую происходит и с многими покеристами. Не имея возможности знать свой настоящий винрейт, они тупо придумывают себе что играют в плюс, только потому что им очень хочется так думать, а все неудачи списывают на дисперсию, ГСЧ или стрики. ИМХО

Заковырка в задаче (опять же ИМХО) в том, что нам предподносят эти 100$ как результат нашего случайного выбора. Подумайте, если бы нам вынесли ЭТУ шкатулку уже открытой и сказали бы только что в другой либо вдвое больше либо вдвое меньше, разве нам в голову пришло бы что шансы 50/50? Так в чем же принципиальное отличие между заранее открытой шкатулкой с сотней и открытой нами шкатулкой с той же сотней? Неужели для нас так важно кто ее открыл - дядя за сценой специально или мы случайно? Почему в первом случае мы понимаем что шансы НЕ 50/50, а во втором случае упорно НЕ хотим понять этого? Вот это действительно парадокс - парадокс человеческого мышления.
korovin вне форума      
Старый 21.11.2008, 19:39   #35 (permalink)
Энтузиаст
 
Регистрация: 27.01.2008
Адрес: Санкт-Петербург
Сообщений: 281
Отправить сообщение для SLOWFLAKE с помощью ICQ Отправить сообщение для SLOWFLAKE с помощью Skype™
Цитата:
Сообщение от Korovin писал ср, 06 август 2008 00:29

Заковырка в задаче (опять же ИМХО) в том, что нам предподносят эти 100$ как результат нашего случайного выбора. Подумайте, если бы нам вынесли ЭТУ шкатулку уже открытой и сказали бы только что в другой либо вдвое больше либо вдвое меньше, разве нам в голову пришло бы что шансы 50/50?
А есть ли у нас какие-либо основания полагать, что вероятность того, что во 2-й шкатулке больше денег чем в открытой больше чем вероятность того что в ней меньше?

Интуитивно совершенно ясно, что МО не изменится. Но приводимое доказательство в этом не убеждает.
__________________
«Не умеющие мыслить воображают, что они распоряжаются судьбами тех, кто мыслит на самом деле» (C)
SLOWFLAKE вне форума      
Старый 21.11.2008, 23:59   #36 (permalink)
Бессмертный
 
Аватар для korovin
 
Регистрация: 13.02.2004
Адрес: Россия
Сообщений: 3,027
Цитата:
Сообщение от SLOWFLAKE писал пт, 21 ноябрь 2008 19:39
Цитата:
Сообщение от Korovin писал ср, 06 август 2008 00:29

Заковырка в задаче (опять же ИМХО) в том, что нам предподносят эти 100$ как результат нашего случайного выбора. Подумайте, если бы нам вынесли ЭТУ шкатулку уже открытой и сказали бы только что в другой либо вдвое больше либо вдвое меньше, разве нам в голову пришло бы что шансы 50/50?
А есть ли у нас какие-либо основания полагать, что вероятность того, что во 2-й шкатулке больше денег чем в открытой больше чем вероятность того что в ней меньше?

Интуитивно совершенно ясно, что МО не изменится. Но приводимое доказательство в этом не убеждает.
Рассмотрим событие: "По дороге в казино мы встретим рыжего мужчину".
Есть ли у нас основания предпологать что вероятность встретить больше чем не встретить? Мы знаем только что либо встретим либо нет, для оценки МО у нас нет данных. На каком основании мы можем принимать их за 50/50? С тем же успхом (нулевым) можно взять 60/40 или 70/30
korovin вне форума      
Старый 22.11.2008, 01:25   #37 (permalink)
Энтузиаст
 
Регистрация: 27.01.2008
Адрес: Санкт-Петербург
Сообщений: 281
Отправить сообщение для SLOWFLAKE с помощью ICQ Отправить сообщение для SLOWFLAKE с помощью Skype™
Цитата:
Сообщение от Korovin писал пт, 21 ноябрь 2008 23:59
Цитата:
Сообщение от SLOWFLAKE писал пт, 21 ноябрь 2008 19:39
Цитата:
Сообщение от Korovin писал ср, 06 август 2008 00:29

Заковырка в задаче (опять же ИМХО) в том, что нам предподносят эти 100$ как результат нашего случайного выбора. Подумайте, если бы нам вынесли ЭТУ шкатулку уже открытой и сказали бы только что в другой либо вдвое больше либо вдвое меньше, разве нам в голову пришло бы что шансы 50/50?
А есть ли у нас какие-либо основания полагать, что вероятность того, что во 2-й шкатулке больше денег чем в открытой больше чем вероятность того что в ней меньше?

Интуитивно совершенно ясно, что МО не изменится. Но приводимое доказательство в этом не убеждает.
Рассмотрим событие: "По дороге в казино мы встретим рыжего мужчину".
Есть ли у нас основания предпологать что вероятность встретить больше чем не встретить? Мы знаем только что либо встретим либо нет, для оценки МО у нас нет данных. На каком основании мы можем принимать их за 50/50? С тем же успхом (нулевым) можно взять 60/40 или 70/30
Все понял. Спасибо. ИМО большинство как раз и не понимает эту задачу как раз потому, что многие привыкли оценивать взаимоисключающие события как равновероятные. На самом деле надо еще и убедиться, что они случайны.
__________________
«Не умеющие мыслить воображают, что они распоряжаются судьбами тех, кто мыслит на самом деле» (C)
SLOWFLAKE вне форума      
Старый 22.11.2008, 05:10   #38 (permalink)
Энтузиаст
 
Регистрация: 27.12.2007
Адрес: Вологда
Сообщений: 275
Цитата:
Сообщение от SLOWFLAKE писал сб, 22 ноябрь 2008 01:25
ИМО большинство как раз и не понимает эту задачу как раз потому, что многие привыкли оценивать взаимоисключающие события как равновероятные. На самом деле надо еще и убедиться, что они случайны.
А потом убедиться что они не только случайны но и равновероятны.
Ну или не равновероятны. И, кстати, кчёрту рыжего мужчину (надеюсь никого не обидел ), есть веть древний анекдот про вероятность встретить динозавра - типа или встретим или нет = 50/50. Также и со шкатулками здесь у тех кто не вкуривает
Lfnt вне форума      
Старый 22.11.2008, 15:41   #39 (permalink)
Новичок
 
Регистрация: 05.06.2008
Адрес: Н Новгород
Сообщений: 43
пусть в шкатулках Х и 2Х денег. открыв любую из них, с вероятностью 50% мы получим Х либо 2Х. изменив выбор, превратим Х—>2Х, а 2Х—>Х. т.е. меняй-не меняй - как было так и осталось (2Х+Х)/2.

теперь
Цитата:
Сообщение от Korovin писал вт, 05 август 2008 17:08
Может быть проведем конкурс на самое доходчивое освещение вопроса: Почему в задаче о шкатулках простая формула "(1/2)*0.5+(2)*0.5=1.25" дает неверный результат?
с такой же уверенностью можно утверждать следующее: как только мы сделали выбор шкатулки мы потеряли в среднем 25%.
на примере: открыв шкатулку, и увидев там 100р.
"Если мы сменим выбор- то 100р(1/2)*0.5+100р(2)*0.5=125р."
Аналогично можно утверждать следующее: как только мы открыли шкатулку, то потеряли в среднем 25р.

ИХМО вся трудность в том, что при решении происходит подмена условия "мы можем выбрать любую из шкатулок" на условие "у нас есть к-сумма".

Например, если нам принесли 2 шкатулки, отдали деньги из одной (мы ничего не выбирали) и заявляют, что с вероятностью 50% в другой шкатулке денег больше/меньше - это совсем другая задача.


ps. сорри што многа букоф и за предыдущие посты
update.
2Korovin - отдельное спасибо за разъяснения мне тупому
__________________
Вероятность крупного выигрыша в лотерею всегда одинакова и не зависит от того, купили вы лотерейный билет или нет.
е2е4 вне форума      

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
задача % 7кл. Спортсмен Поговорим за жизнь 7 14.11.2009 14:58
Ну а теперь задачка про три шкатулки Aimer Игра вообще 23 16.03.2009 12:42
Шкатулки. Голосование. korovin Игра вообще 72 03.03.2008 09:56
Шкатулки. Последняя попытка мозгового штурма. korovin Игра вообще 21 13.08.2007 16:43


Опции темы

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Trackbacks are Выкл.
Pingbacks are Выкл.
Refbacks are Выкл.

Быстрый переход
Правила форумов CGM Контакты Справка Обратная связь CGM.ru Архив Вверх Главная
 
Использование материалов сайта разрешено только при наличии активной ссылки на источник.
Все права на картинки и тексты принадлежат Информационному агентству CGM и их ПАРТНЕРАМ. Политика конфидециальности
CGM.ru на Youtube CGM.ru на Google+ CGM.ru в Twitter CGM.ru на Facebook CGM.ru в vKontakte CGM.ru в Instagram

В сотрудничестве с Pokeroff.ru
Текущее время: 12:48. Часовой пояс GMT +3.
Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2022, vBulletin Solutions, Inc. Перевод: zCarot